Amedeo Smart

Free Medical Literature Service



Ischemic Heart Disease

  Free Subscription

Articles published in
Cardiovasc Res
    July 2021
  1. XU JY, Xiong YY, Tang RJ, Jiang WY, et al
    Interleukin-5-induced eosinophil population improves cardiac function after myocardial infarction.
    Cardiovasc Res. 2021 Jul 14. pii: 6321229. doi: 10.1093.
    >> Share

    June 2021
  2. MANGOLD A, Ondracek AS, Hofbauer TM, Scherz T, et al
    Culprit site extracellular DNA and microvascular obstruction in ST-elevation myocardial infarction.
    Cardiovasc Res. 2021 Jun 26. pii: 6310009. doi: 10.1093.
    >> Share

    April 2021
  3. YU J, Li J, Leaver PJ, Arnott C, et al
    Effects of canagliflozin on myocardial infarction: a post hoc analysis of the CANVAS Program and CREDENCE trial.
    Cardiovasc Res. 2021 Apr 7. pii: 6214523. doi: 10.1093.
    >> Share

    March 2021
  4. ZHAO TX, Ur-Rahman MA, Sage AP, Victor S, et al
    Rituximab in Patients with Acute ST-elevation Myocardial Infarction (RITA-MI): an Experimental Medicine Safety Study.
    Cardiovasc Res. 2021 Mar 30. pii: 6203810. doi: 10.1093.
    >> Share

    February 2021
  5. TRINDER M, Zekavat SM, Uddin MM, Pampana A, et al
    Apolipoprotein B is an insufficient explanation for the risk of coronary disease associated with lipoprotein(a).
    Cardiovasc Res. 2021 Feb 24. pii: 6149309. doi: 10.1093.
    >> Share

    January 2021
    Remote ischaemic conditioning modulates platelet reactivity: the need to optimize the therapy is more important than ever before.
    Cardiovasc Res. 2021;117:346-347.
    >> Share

    Sphingosine-1-phosphate receptor-1 (S1PR1) signalling: the homeostatic pathway of the heart.
    Cardiovasc Res. 2021;117:357-359.
    >> Share

  8. KAIER TE, Alaour B, Marber M
    Cardiac troponin and defining myocardial infarction.
    Cardiovasc Res. 2021 Jan 17. pii: 6103159. doi: 10.1093.
    >> Share

  9. FIOLET ATL, Thompson PL, Mosterd A
    Colchicine in coronary disease: another renaissance of an ancient drug.
    Cardiovasc Res. 2021;117:e4-e6.
    >> Share

  10. MUELLER KAL, Langnau C, Gunter M, Poschel S, et al
    Numbers and phenotype of non-classical CD14dimCD16+ monocytes are predictors of adverse clinical outcome in patients with coronary artery disease and severe SARS-CoV-2 infection.
    Cardiovasc Res. 2021;117:224-239.
    >> Share

  11. MAIN A, Robertson-Gray O, Fuller W
    Cyclophilin D palmitoylation and permeability transition: a new twist in the tale of myocardial ischaemia-reperfusion injury.
    Cardiovasc Res. 2021;117:15-17.
    >> Share

    October 2020
  12. WU X, Reboll MR, Korf-Klingebiel M, Wollert KC, et al
    Angiogenesis After Acute Myocardial Infarction.
    Cardiovasc Res. 2020 Oct 16. pii: 5924555. doi: 10.1093.
    >> Share

    September 2020
  13. KESSLER T, Graf T, Hilgendorf I, Rizas K, et al
    Hospital admissions with acute coronary syndromes during the COVID-19 pandemic in German cardiac care units.
    Cardiovasc Res. 2020;116:1800-1801.
    >> Share

    August 2020
  14. PERROTTA S, Carnevale D
    A neuro-humoral activation of RAAS in endothelial dysfunction modulating immunity in heart failure.
    Cardiovasc Res. 2020 Aug 4. pii: 5880579. doi: 10.1093.
    >> Share

    July 2020
  15. TAO Z, Loo S, Su L, Tan S, et al
    Angiopoietin-1 enhanced myocyte mitosis, engraftment, and the reparability of hiPSC-CMs for treatment of myocardial infarction.
    Cardiovasc Res. 2020 Jul 14. pii: 5871500. doi: 10.1093.
    >> Share

    June 2020
  16. PERRINO C, Ferdinandy P, Botker HE, Brundel BJJM, et al
    Improving Translational Research in Sex-specific Effects of Comorbidities and Risk Factors in Ischemic Heart Disease and Cardioprotection: Position Paper and Recommendations of the ESC Working Group on Cellular Biology of the Heart.
    Cardiovasc Res. 2020 Jun 2. pii: 5850402. doi: 10.1093.
    >> Share

  17. ANGIOLILLO DJ, Baber U, Mehran R
    Ticagrelor monotherapy in patients with diabetes mellitus undergoing percutaneous coronary interventions: insights from the TWILIGHT trial.
    Cardiovasc Res. 2020;116:e70-e72.
    >> Share

  18. LI J, Gong Y, Wang W, Yang Q, et al
    Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR.
    Cardiovasc Res. 2020;116:1349-1356.
    >> Share

    May 2020
  19. NICCOLI G, Luescher TF, Crea F
    Decreased myocardial infarction admissions during COVID times: what can we learn?
    Cardiovasc Res. 2020 May 28. pii: 5847828. doi: 10.1093.
    >> Share

  20. NAMBU H, Takada S, Maekawa S, Matsumoto J, et al
    Inhibition of xanthine oxidase in the acute phase of myocardial infarction prevents skeletal muscle abnormalities and exercise intolerance.
    Cardiovasc Res. 2020 May 13. pii: 5836830. doi: 10.1093.
    >> Share

  21. KAUR A, Mackin ST, Schlosser K, Wong FL, et al
    Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease.
    Cardiovasc Res. 2020;116:1113-1124.
    >> Share

  22. SI R, Zhang Q, Tsuji-Hosokawa A, Watanabe M, et al
    Overexpression of p53 due to excess protein O-GlcNAcylation is associated with coronary microvascular disease in type 2 diabetes.
    Cardiovasc Res. 2020;116:1186-1198.
    >> Share

  23. HOOGENDOORN A, Kok AM, Hartman EMJ, de Nisco G, et al
    Multidirectional wall shear stress promotes advanced coronary plaque development: comparing five shear stress metrics.
    Cardiovasc Res. 2020;116:1136-1146.
    >> Share

  24. GOLLMANN-TEPEKOYLU C, Polzl L, Graber M, Hirsch J, et al
    miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy.
    Cardiovasc Res. 2020;116:1226-1236.
    >> Share

    April 2020
  25. KOMPA AR, Greening DW, Kong AM, McMillan PJ, et al
    Sustained subcutaneous delivery of secretome of human cardiac stem cells promotes cardiac repair following myocardial infarction.
    Cardiovasc Res. 2020 Apr 6. pii: 5816595. doi: 10.1093.
    >> Share

  26. OWENIER C, Hesse J, Alter C, Ding Z, et al
    Novel technique for the simultaneous isolation of cardiac fibroblasts and epicardial stromal cells from the infarcted murine heart.
    Cardiovasc Res. 2020;116:1047-1058.
    >> Share

  27. ROCZKOWSKY A, Chan BYH, Lee TYT, Mahmud Z, et al
    Myocardial MMP-2 contributes to SERCA2a proteolysis during cardiac ischaemia-reperfusion injury.
    Cardiovasc Res. 2020;116:1021-1031.
    >> Share

    March 2020
  28. GOROG DA, Farag M, Spinthakis N, Yellon DM, et al
    Effect of remote ischaemic conditioning on platelet reactivity and endogenous fibrinolysis in ST-elevation myocardial infarction- a substudy of the CONDI-2/ERIC-PPCI randomised controlled trial.
    Cardiovasc Res. 2020 Mar 12. pii: 5803645. doi: 10.1093.
    >> Share

  29. BAIREY MERZ CN, Pepine CJ, Shimokawa H, Berry C, et al
    Treatment of coronary microvascular dysfunction.
    Cardiovasc Res. 2020;116:856-870.
    >> Share

  30. PADRO T, Manfrini O, Bugiardini R, Canty J, et al
    ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on 'coronary microvascular dysfunction in cardiovascular disease'.
    Cardiovasc Res. 2020;116:741-755.
    >> Share

  31. WAHEED N, Elias-Smale S, Malas W, Maas AH, et al
    Sex differences in non-obstructive coronary artery disease.
    Cardiovasc Res. 2020;116:829-840.
    >> Share

  32. SECHTEM U, Brown D, Godo S, Lanza GA, et al
    Coronary microvascular dysfunction in stable ischaemic heart disease (non-obstructive coronary artery disease and obstructive coronary artery disease).
    Cardiovasc Res. 2020;116:771-786.
    >> Share

  33. ONG P, Safdar B, Seitz A, Hubert A, et al
    Diagnosis of coronary microvascular dysfunction in the clinic.
    Cardiovasc Res. 2020;116:841-855.
    >> Share

  34. LAKSHMANAN S, Shekar C, Kinninger A, Dahal S, et al
    Comparison of mineral oil and non-mineral oil placebo on coronary plaque progression by coronary computed tomography angiography.
    Cardiovasc Res. 2020;116:479-482.
    >> Share

  35. SPADACCIO C, Antoniades C, Nenna A, Chung C, et al
    Preventing treatment failures in coronary artery disease: what can we learn from the biology of in-stent restenosis, vein graft failure, and internal thoracic arteries?
    Cardiovasc Res. 2020;116:505-519.
    >> Share

  36. LOU X, Zhao M, Fan C, Fast VG, et al
    N-cadherin overexpression enhances the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes in infarcted mouse hearts.
    Cardiovasc Res. 2020;116:671-685.
    >> Share

  37. GAO C, Wang R, Li B, Guo Y, et al
    TXNIP/Redd1 signalling and excessive autophagy: a novel mechanism of myocardial ischaemia/reperfusion injury in mice.
    Cardiovasc Res. 2020;116:645-657.
    >> Share

  38. BOISGUERIN P, Covinhes A, Gallot L, Barrere C, et al
    A novel therapeutic peptide targeting myocardial reperfusion injury.
    Cardiovasc Res. 2020;116:633-644.
    >> Share

    February 2020
  39. KUANG Y, Li X, Liu X, Wei L, et al
    Vascular endothelial S1pr1 ameliorates adverse cardiac remodeling via stimulating reparative macrophage proliferation after myocardial infarction.
    Cardiovasc Res. 2020 Feb 24. pii: 5753950. doi: 10.1093.
    >> Share

  40. MOLITOR M, Rudi WS, Garlapati V, Finger S, et al
    Nox2+ Myeloid cells drive vascular inflammation and endothelial dysfunction in heart failure after myocardial infarction via angiotensin II receptor type 1.
    Cardiovasc Res. 2020 Feb 20. pii: 5741408. doi: 10.1093.
    >> Share

  41. PHAM TP, Boon RA
    Exosomes and non-coding RNA, the healers of the heart?
    Cardiovasc Res. 2020;116:258-259.
    >> Share

  42. MORROW A, Sidik N, Berry C
    ISCHEMIA: new questions from a landmark trial.
    Cardiovasc Res. 2020;116:e23-e25.
    >> Share

  43. SCHMIDT C, Katus HA
    Scientists on the Spot: Moving forward from myocardial injury.
    Cardiovasc Res. 2020;116:e29.
    >> Share

    December 2019
  44. COMMANDEUR F, Slomka PJ, Goeller M, Chen X, et al
    Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study.
    Cardiovasc Res. 2019 Dec 19. pii: 5680420. doi: 10.1093.
    >> Share

  45. PEET C, Ivetic A, Bromage DI, Shah AM, et al
    Cardiac monocytes and macrophages after myocardial infarction.
    Cardiovasc Res. 2019 Dec 16. pii: 5678786. doi: 10.1093.
    >> Share

    November 2019
  46. PETERSON BE, Bhatt DL
    Minding the Gaps in Post-Myocardial Infarction Mortality Between Sweden and the UK.
    Cardiovasc Res. 2019 Nov 28. pii: 5646649. doi: 10.1093.
    >> Share

  47. SAMIDURAI A, Roh SK, Prakash M, Durrant D, et al
    STAT3-miR-17/20 Signaling Axis Plays a Critical Role in Attenuating Myocardial Infarction following Rapamycin Treatment in Diabetic mice.
    Cardiovasc Res. 2019 Nov 18. pii: 5628225. doi: 10.1093.
    >> Share

    rs1883832: a CD40 single nucleotide polymorphism for predicting coronary heart disease in humans.
    Cardiovasc Res. 2019 Nov 13. pii: 5625153. doi: 10.1093.
    >> Share

  49. KONIJNENBERG LSF, Damman P, Duncker DJ, Kloner RA, et al
    Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction.
    Cardiovasc Res. 2019 Nov 9. pii: 5618723. doi: 10.1093.
    >> Share

  50. ANAND A, Mills NL
    Diagnosing myocardial infarction in the era of high-sensitivity troponin: the High-STEACS trial.
    Cardiovasc Res. 2019 Nov 7. pii: 5614321. doi: 10.1093.
    >> Share

  51. FILIPPATOS G, Farmakis D
    A look back: the quest for thrombosis in heart failure continues after COMMANDER HF.
    Cardiovasc Res. 2019;115:e140-e142.
    >> Share

    October 2019
  52. HAUSENLOY DJ, Botker HE
    Why did remote ischaemic conditioning not improve clinical outcomes in acute myocardial infarction in the CONDI-2/ERIC-PPCI trial?
    Cardiovasc Res. 2019 Oct 17. pii: 5588934. doi: 10.1093.
    >> Share

    August 2019
  53. SULTAN CS, Weitnauer M, Turinsky M, Kessler T, et al
    Functional association of a CD40 gene single nucleotide polymorphism with the pathogenesis of coronary heart disease.
    Cardiovasc Res. 2019 Aug 2. pii: 5542951. doi: 10.1093.
    >> Share

    July 2019
  54. ALABAS OA, Jernberg T, Pujades-Rodriguez M, Rutherford MJ, et al
    Statistics on mortality following acute myocardial infarction in 842,897 Europeans.
    Cardiovasc Res. 2019 Jul 26. pii: 5539698. doi: 10.1093.
    >> Share

  55. SCHWACH V, Fernandes MG, Maas S, Gerhardt S, et al
    Expandable human cardiovascular progenitors from stem cells for regenerating mouse heart after myocardial infarction.
    Cardiovasc Res. 2019 Jul 9. pii: 5530198. doi: 10.1093.
    >> Share

    June 2019
  56. YANG CF, Chen YY, Singh JP, Hsu SF, et al
    Targeting Protein Tyrosine Phosphatase PTP-PEST for Therapeutic Intervention in Acute Myocardial Infarction.
    Cardiovasc Res. 2019 Jun 22. pii: 5522027. doi: 10.1093.
    >> Share

  57. HOYER FF, Nahrendorf M
    Interferon- regulates cardiac myeloid cells in myocardial infarction.
    Cardiovasc Res. 2019 Jun 4. pii: 5510546. doi: 10.1093.
    >> Share

    May 2019
  58. HUANG P, Wang L, Li Q, Tian X, et al
    Atorvastatin Enhances the Therapeutic Efficacy of Mesenchymal Stem Cells Derived Exosomes in Acute Myocardial Infarction via Up-regulating Long Non-coding RNA H19.
    Cardiovasc Res. 2019 May 22. pii: 5497485. doi: 10.1093.
    >> Share

  59. SCARSINI R, Banning AP
    DEFINE-ing the next steps in interventional cardiology: updates on coronary physiology, acute myocardial infarction, and dual-antiplatelet therapy from American College of Cardiology 2019.
    Cardiovasc Res. 2019 May 15. pii: 5489797. doi: 10.1093.
    >> Share

    April 2019
  60. FINGER S, Knorr M, Molitor M, Schuler R, et al
    A sequential interferon gamma directed chemotactic cellular immune response determines survival and cardiac function post myocardial infarction.
    Cardiovasc Res. 2019 Apr 5. pii: 5428148. doi: 10.1093.
    >> Share

    March 2019
  61. GAST M, Rauch B, Haghikia A, Nakagawa S, et al
    Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients.
    Cardiovasc Res. 2019 Mar 29. pii: 5423185. doi: 10.1093.
    >> Share

  62. DE KLEIJN DPV, Chong SY, Wang X, Yatim SMJM, et al
    Toll-like Receptor 7 Deficiency Promotes Survival and Reduces Adverse Left Ventricular Remodeling After Myocardial Infarction.
    Cardiovasc Res. 2019 Mar 4. pii: 5369232. doi: 10.1093.
    >> Share

  63. BEGUIER F, Epelman S
    Endocannabinoid signalling: bone marrow monocytes and neutrophils follow their nose into ischaemic tissue.
    Cardiovasc Res. 2019;115:482-484.
    >> Share

    January 2019
  64. ZABCZYK M, Natorska J, Zalewski J, Undas A, et al
    Fibrin biofilm can be detected on intracoronary thrombi aspirated from patients with acute myocardial infarction.
    Cardiovasc Res. 2019 Jan 28. pii: 5303509. doi: 10.1093.
    >> Share

  65. MADONNA R, Van Laake LW, Botker HE, Davidson SM, et al
    ESC Working Group on Cellular Biology of the Heart: Tissue Engineering and Cell-Based Therapies for Cardiac Repair in Ischemic Heart Disease and Heart Failure.
    Cardiovasc Res. 2019 Jan 17. pii: 5292411. doi: 10.1093.
    >> Share

  66. BERRY C, Bengel FM
    Impaired coronary flow reserve: a pre-requisite for coronary revascularization.
    Cardiovasc Res. 2019;115:4-5.
    >> Share

  67. DESAI MY
    Noninvasive detection of perivascular inflammation by coronary computed tomography in the CRISP-CT study and its implications for residual cardiovascular risk.
    Cardiovasc Res. 2019;115:e3-e4.
    >> Share

    October 2018
  68. ROE AT, Ruud M, Espe EK, Manfra O, et al
    Regional diastolic dysfunction in post-infarction heart failure: role of local mechanical load and SERCA expression.
    Cardiovasc Res. 2018 Oct 23. pii: 5142689. doi: 10.1093.
    >> Share

  69. MATSUMOTO K, Obana M, Kobayashi A, Kihara M, et al
    Blockade of NKG2D/NKG2D Ligand Interaction Attenuated Cardiac Remodeling after Myocardial Infarction.
    Cardiovasc Res. 2018 Oct 11. pii: 5126925. doi: 10.1093.
    >> Share

    No hearty reception; infusion of CXCL4 impedes tissue repair by macrophages after myocardial infarction.
    Cardiovasc Res. 2018 Oct 5. pii: 5115993. doi: 10.1093.
    >> Share

  71. KIMURA T, Tajiri K, Sato A, Sakai S, et al
    Tenascin-C Accelerates Adverse Ventricular Remodeling after Myocardial Infarction by Modulating Macrophage Polarization.
    Cardiovasc Res. 2018 Oct 5. pii: 5122727. doi: 10.1093.
    >> Share

    September 2018
  72. SCHLOSS MJ, Horckmans M, Guillamat-Prats R, Hering D, et al
    2-arachidonoylglycerol mobilizes myeloid cells and worsens heart function after acute myocardial infarction.
    Cardiovasc Res. 2018 Sep 28. pii: 5115994. doi: 10.1093.
    >> Share

    August 2018
  73. LINDSEY ML, Jung M, Yabluchanskiy A, Cannon PL, et al
    Exogenous CXCL4 Infusion Inhibits Macrophage Phagocytosis by Limiting CD36 Signaling to Enhance Post-myocardial Infarction Cardiac Dilation and Mortality.
    Cardiovasc Res. 2018 Aug 29. pii: 5086353. doi: 10.1093.
    >> Share

  74. VILAHUR G, Gutierrez M, Casani L, Lambert C, et al
    P2Y12 antagonists and cardiac repair post-myocardial infarction: global and regional heart function analysis and molecular assessments in pigs.
    Cardiovasc Res. 2018 Aug 14. pii: 5074301. doi: 10.1093.
    >> Share

  75. BUENO-BETI C, Novella S, Soleti R, Mompeon A, et al
    Microparticles Harboring Sonic Hedgehog Morphogen Improve the Vasculogenesis Capacity of Endothelial Progenitor Cells Derived from Myocardial Infarction Patients.
    Cardiovasc Res. 2018 Aug 14. pii: 5074321. doi: 10.1093.
    >> Share

  76. ZHAO M, Fan C, Ernst PJ, Tang Y, et al
    Y-27632 Preconditioning Enhances Transplantation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Myocardial Infarction Mice.
    Cardiovasc Res. 2018 Aug 13. pii: 5073049. doi: 10.1093.
    >> Share

  77. TOKUTOME M, Matoba T, Nakano Y, Okahara A, et al
    PPARgamma-targeting Nanomedicine Promotes Cardiac Healing After Acute Myocardial Infarction by Skewing Monocyte/Macrophage Polarization in Preclinical Animal Models.
    Cardiovasc Res. 2018 Aug 3. pii: 5066356. doi: 10.1093.
    >> Share

    July 2018
  78. POL AV, Gil A, Tromp J, Sillje HHW, et al
    OPLAH ablation leads to accumulation of 5-oxoproline, oxidative stress, fibrosis and elevated fillings pressures: a murine model for heart failure with a preserved ejection fraction.
    Cardiovasc Res. 2018 Jul 19. pii: 5056075. doi: 10.1093.
    >> Share

  79. PANAHI M, Papanikolaou A, Torabi A, Zhang JG, et al
    Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition.
    Cardiovasc Res. 2018 Jul 14. pii: 5054000. doi: 10.1093.
    >> Share

  80. WANG Y, Liu J, Kong Q, Cheng H, et al
    Cardiomyocyte-Specific Deficiency of HSPB1 Worsens Cardiac Dysfunction by Activating NFkappaB-Mediated Leukocyte Recruitment After Myocardial Infarction.
    Cardiovasc Res. 2018 Jul 2. pii: 5047821. doi: 10.1093.
    >> Share

    June 2018
    Reg-ulating macrophage infiltration to alter wound healing following myocardial infarction.
    Cardiovasc Res. 2018 Jun 15. pii: 5038408. doi: 10.1093.
    >> Share

    May 2018
  82. LORCHNER H, Hou Y, Adrian-Segarra JM, Kulhei J, et al
    Reg proteins direct accumulation of functionally distinct macrophage subsets after myocardial infarction.
    Cardiovasc Res. 2018 May 30. pii: 5025270. doi: 10.1093.
    >> Share

    March 2018
  83. DEUTSCH MA, Doppler SA, Li X, Lahm H, et al
    Reactivation of the Nkx2.5 cardiac enhancer after myocardial infarction does not presage myogenesis.
    Cardiovasc Res. 2018 Mar 20. pii: 4944453. doi: 10.1093.
    >> Share

  84. CHEN CW, Wang LL, Zaman S, Gordon J, et al
    Sustained Release of Endothelial Progenitor Cell-Derived Extracellular Vesicles from Shear-Thinning Hydrogels Improves Angiogenesis and Promotes Function after Myocardial Infarction.
    Cardiovasc Res. 2018 Mar 16. pii: 4939452. doi: 10.1093.
    >> Share

    November 2017
  85. ZIEGLER KA, Ahles A, Wille T, Kerler J, et al
    Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice.
    Cardiovasc Res. 2017 Nov 24. pii: 4657089. doi: 10.1093.
    >> Share

    September 2017
  86. PARK KC, Gaze DC, Collinson PO, Marber MS, et al
    Cardiac troponins: from myocardial infarction to chronic disease.
    Cardiovasc Res. 2017 Sep 14. doi: 10.1093.
    >> Share

    July 2017
  87. BAYOUMI AS, Teoh JP, Aonuma T, Yuan Z, et al
    MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition.
    Cardiovasc Res. 2017 Jul 11. doi: 10.1093.
    >> Share

    June 2017
  88. SCHOBESBERGER S, Wright P, Tokar S, Bhargava A, et al
    T-tubule remodelling disturbs localized beta2-adrenergic signalling in rat ventricular myocytes during the progression of heart failure.
    Cardiovasc Res. 2017;113:770-782.
    >> Share

  89. PERRINO C, Barabasi AL, Condorelli G, Davidson SM, et al
    Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart.
    Cardiovasc Res. 2017;113:725-736.
    >> Share

  90. MANSOR LS, Sousa Fialho MDL, Yea G, Coumans WA, et al
    Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation.
    Cardiovasc Res. 2017;113:737-748.
    >> Share

    May 2017
  91. HAUSENLOY DJ, Garcia-Dorado D, Botker HE, Davidson SM, et al
    Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart.
    Cardiovasc Res. 2017;113:564-585.
    >> Share

  92. CHEN Z, Xie J, Hao H, Lin H, et al
    Ablation of periostin inhibits post-infarction myocardial regeneration in neonatal mice mediated by the phosphatidylinositol 3 kinase/glycogen synthase kinase 3beta/cyclin D1 signalling pathway.
    Cardiovasc Res. 2017;113:620-632.
    >> Share

  93. VINCENT A, Sportouch C, Covinhes A, Barrere C, et al
    Cardiac mGluR1 metabotropic receptors in cardioprotection.
    Cardiovasc Res. 2017;113:644-655.
    >> Share

  94. VALLE RALEIGH J, Mauro AG, Devarakonda T, Marchetti C, et al
    Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism.
    Cardiovasc Res. 2017;113:609-619.
    >> Share

    April 2017
  95. WANG Z, Huang S, Sheng Y, Peng X, et al
    Topiramate modulates post-infarction inflammation primarily by targeting monocytes or macrophages.
    Cardiovasc Res. 2017;113:475-487.
    >> Share

    March 2017
  96. BROMAGE DI, Pickard JM, Rossello X, Ziff OJ, et al
    Remote ischaemic conditioning reduces infarct size in animal in vivo models of ischaemia-reperfusion injury: a systematic review and meta-analysis.
    Cardiovasc Res. 2017;113:288-297.
    >> Share

    February 2017
  97. LIM S, Lee GY, Park HS, Lee DH, et al
    Attenuation of carotid neointimal formation after direct delivery of a recombinant adenovirus expressing glucagon-like peptide-1 in diabetic rats.
    Cardiovasc Res. 2017;113:183-194.
    >> Share

    January 2017
  98. JOSE ALBURQUERQUE-BEJAR J, Barba I, Valls-Lacalle L, Ruiz-Meana M, et al
    Remote ischemic conditioning provides humoural cross-species cardioprotection through glycine receptor activation.
    Cardiovasc Res. 2017;113:52-60.
    >> Share

  99. RAWAL S, Munasinghe PE, Shindikar A, Paulin J, et al
    Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy.
    Cardiovasc Res. 2017;113:90-101.
    >> Share

    November 2016
  100. LI L, Li J, Drum BM, Chen Y, et al
    Loss of AKAP150 promotes pathological remodelling and heart failure propensity by disrupting calcium cycling and contractile reserve.
    Cardiovasc Res. 2016.
    >> Share

    July 2016
  101. TAKADA S, Masaki Y, Kinugawa S, Matsumoto J, et al
    Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of GLP-1 receptor signaling.
    Cardiovasc Res. 2016.
    >> Share

Free Medical Abstracts
Privacy Policy

© Amedeo 1997-2016